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“For a solvable monotone complementarity problem -we show- that each

feasible point which is not a solution of the problem provides simple
numerical bounds for some or all components of all solution vectors.
Consequently for a solvable differentiable convex program each primal-dual
feasible point which is not optimal provides simple numerical bqunds‘for )
some or all components of all primal-dual solution vectors. N;vzigs.éive an
existence result and simple bounds for solutions of monotone complementarity
problems satisfying a new, distributed constraint qualification. This

result carries over to a simple existence and boundedness result for dif-

ferentiable convex programs satisfying a similar constraint qualification.
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SIGNIFICANCE AND EXPLANATION

. Simple bounds are given for solutions of fundamental optimization
problems: monotone complementarity problems and convex programs. It is
shown that each nonoptimal but feasible point carries within it simple
numerical information which bounds some or all components of all solu-

tion vectors. Thus bounds are obtained without solving the problems.
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't/ The responsibility for the wording and views expressed in this descriptive
i summary 1ies with MRC, and not with the authors of this report.




SIMPLE BOUNDS FOR SOLUTIONS OF MONOTONE
COMPLEMENTARITY PROBLEMS AND CONVEX PROGRAMS

0. L. Mangasarian, L. McLinden

1. The Monotone Complementarity Problem

This work is based on an extremely simple, but apparently unnoticed,

property of the monotone complementarity problem [2,5,8,11,12] of finding

2k

a (z,w) in the 2k-dimensional Euclidean space R such that

(1.1) w=F(z)>0,2>0,2w=0

k is a monotone function on D where R'; cDc Rk, that is

Here F: D+ R
(8- 2 )(F(2%) - F(z")) 20 forall 2', 22D
The property is the following:

1.1 Theorem Let (z,w) be some feasible point of a solvable monotone

complementarity problem (1.1), that is w = F(z) >0, 2 > 0. Any solution

(z,w) of (1.1) is bounded as follows:

(a) (ZMly:= T % < zw/min w, ;:= 2w/min w,
jel jel

(b) liwylly < 2w /min 2, _,

(c) Nzys wylly < zw [ min {z g Wi 1)

where I = {i|w;>0} and J = {i|z;>0}.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grants MCS-8200632 and MCS-8102684.
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Proof For any solution (Z,w) of (1.1) we have by the monotonicity of

F and zZw = 0 that
W > Zw + ZW

Hence by the nonnegativity of (z,w) and (Z,w) we have

(a) w2 Zwp 2 ”21”1 min Wil
(b) w > zgw; > lwylly min z, ,
{c) 2w 2 ZyWp t ZgWg > HzI,wJH‘ » min {z;_j;w; ¢} 0

Theorem 1.1 is a partial extension to the monotone complementarity
problem of a corresponding result, Theorem 2.2 of [7], for the positive
semidefinite linear complementarity problem. MNote that, unlike the linear
case, feasibility for the nonlinear monotone complementarity probiem does
not imply solvability as shown by the simple example of [10].

Theorem 1.1 shows that any feasible point (z,w) of a solvable
monotone cdmplementarity problem (1.1) which is not a solution of the
problem (so that at least I is nonempty or J is nonempty) provides
some information about the magnitude of the solution set. In certain
cases, such as when w > 0, we get a bound on all components of all
solution vectors 2.

With the bounds given by Theorem 1.1 it is possible to obtain bounds
for optimal solutions and muitipliers of solvable differentiable convex
programs once they are'cast as monotone complementarity problems. (See J
Section 2.) But before doing that we show how the bounds of Theorem 1.1

can be extended to approximate solutions of monotone complementarity

problems which may not even be solvable. Let
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(1.2) a:= inf {zw|w=F(z)>0, 220} > 0,

and for € >0 let (zZ(e), w(e)) be an e-solution of the optimization

problem of (1.2), that is
(1.3) w(e) = F(2(e)) 20, Z(e) 20, a + £ > Z(e)w(e) 2 a

Note that for any € > 0, an e-solution always exists provided problem

(1.2) has at least one feasible point. A O-solution exists provided the
infimum of (1.2) is attained, that is the infimum is a minimum. Furthermore
if o = 0, then an e-solution of (1.2) is an "approximate" solution of the
complementarity problem (1.1) which is an exact solution if ¢ = 0. With
these concepts in mind it follows from (1.2), (1.3) and the monotonicity of

F that, for any feasible (z,w) and €20,
(1.4) 2zw + e 2w +a + € > 2w + 2(e)wle) > zw(e) + Z(e)w

Consequently, arguing exactly as in Theorem 1.1 we obtain the following

bounds for e-solutions of the optimization problem (1.2).

1.2 Theorem Let F be monotone on Rt and let (z,w) be some feasible
point of the optimization problem of (1.2), that is, w = F(2) >0, 220,
and let ¢ > 0. Any e-solution (Z(e), w(e)) of (1.2), defined by (1.3),

is bounded as follows:
(a) Iz ()l s (zw+a+e)/min w, | < (22w+e)/min wy

(b) Ilid(e)||]g(zw+a+ef/min 2.4 & (2zwee)fmin 2,

(C) ”il(e), iJ(E)lh :(zw +G"’E)/lﬂ"ﬂ {zieJ’ wf(l}igzm*e)/m"‘ {zie\]’ "itl}

where 1 = {i|w, >0} and J = {i]zy>0}.




Note that this theorem subsumes Theorem 1.1. For if we assume that the
complementarity problem (1.1) is solvable as in Theorem 1.1, then we can set
a=€=0 in Theorem 1.2 and obtain Theorem 1.1.

A generalization of Theorem 1.2 is possible if, instead of one feasible
point (z,w), we consider p feasible points (zj,wj), j=1,2,...,p, of

the optimization problem of (1.2) and correspomding weights Ad 20, j=1,...,p,

P

such that |} A = 1. Then by (1.2), (1.3) and the monotonicity of F we have
j=1

that

P .. . p . P . . P . p
(1.5) 2]} Az +e> ] Azdyd +tate> ] a3y +Z(e)wle) 2 ] Aszﬁ(e) +] )\ji(e)wj
J=1 j=1 J=1 j=1 j:]

Again arguing as in Theorem 1.1 we obtain the following bounds.

K

4 and let (zj,wj). j=1,2,...,p, be

1.3 Theorem Let F be monotone on R

feasible points of the optimization problem of (1.2), that is, w:I = F(zj) >0,

i . i - B3

z’ >0, j=1,2,...,p. Let XY >0, j=1,2,...,p, J A =1 and let € > 0. Any
J=

e-solution (Z(e), w(e)) of (1.2) defined by (1.3) is bounded as follows:

P . . P
(a) IIEI(e)”]i(jZ]AszwJ+a+e)/min W1 i(.‘sz'lAJszjw)/min Wil

- S 3] B 3,
(b) ||wJ(s)||] g(JZ]k z°w'+ate) /min iieJ g(zjz1>\jz wj+e)/min iieJ

s () & R .34 R 343
(c) Ilzl(e),wd(e)lhf_(jz]}\ 2w +a+e)/min{iied,ﬁi€1}g(2j§1)\ 29w +e)/m1n{zieJ.w1.€I}

; 2 5 adgd 53
where I = {i|&;>0}, J = {i|2;>0}, 2:= ] X'z’ and #:= ] A W,
= =1

We note that the first inequality of each of (a), (b) and (c) of Theo-

rem 1.3 remains valid even if we do not require that W >0 and 23 > 0, but

merely that zje D, where Rt cD e Rk, F {is monotone on D and Z >0

and w > 0. This remark will be employed in Theorem 1.4.
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An application of Theorem 1.3 is the following boundedness result
for complementarity problems satisfying a new, "distributed" constraint

qualification, and for which we also establish an existence result,

1.4 Theorem (Existence and boundedness of solutions of monotone complemen-
tarity problems under a distributed constraint qualification) Let

F: D~ Rk be monotone and continuous on D such that RE cDc Rk, let

P, wl = F23)eR¥, jo1,2,....p, be such that 3:= % adzd > 0,
3=

- p

wi= E Awd > 0 for some Aj 20, j=1,2,...p, Z )‘j = 1. Then the complemen-
J=1 §=

tarity problem (1.1) is solvable. Any solution (z,w) is bounded as follows:

p .
(1.6) zll, < {( )\szwj) min W,
Izl < (L /1.<.i:k Wy

Proof The bound (1.6) follows from Theorem 1.3(a) with a =€ = 0 and the
remark following it, once we have established the existence of a solution to
the complementarity problem (1.1), which we proceed to do now by means of the

Brouwer fixed point theorem [1,14]. Let

A

C:= {2{z>0, Wz<WZ+Y},

where

| S
(1.7) y > max {1,-wz+ § Az} >0
3=

The set C is nonempty, compact and convex and the single-valued mapping [4]

defined by the 2-norm projection of 2z - F(z) on C:

z » argmin |ly-z +F(z)||2
yeC

defines a continuous function from C 1into itself. Hence by Brouwer's

‘e
F s
t
b
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theorem this function must have a fixed point ZeC. Such a point satisfies

the minimum principle optimality condition [6].
(1.8) zeC, F(i)()"i)zo YyeC

If Wz <w+y then Z solves (1.1). Indeed Z + se,, 121,2,...,k, is
in C for & sufficiently small and positive and e, the ith unit coordi-
nate vector, and hence by (1.8) it follows that F(Z) >0, 2> 0, and

ZF(2) < 0 by taking y = 0 in (1.8). We now show that the case

(1.9) WZ = W2 + Y

cannot occur, For if it did, then from the monotonicity of F we have
ZF(2) 3I-zjwj + 235 4 iwj, J=1,2,...,p

where w:= F(Z). Multiplying by A and summing over j gives

A2 4 3w+ W

ZF(z) >
1

J

e~

> 2w = 2F(2Z) (By (1.9) and (1.7))

Hence F(z)(Z-2) < 0 which contradicts (1.8). So (1.9) cannot occur and

z solves (1.1). 8]

We note that the existence part of the above theorem for the ordinary
constraint qualification, that is p =1, was obtained by Moré
{12, Theorem 3.2] and by one of the authors in [8, Theorem 1] for the case
of multivalued monotone mappings.

It is interesting to note that the complementarity problem of Megiddo

[10] which has no solution does not satisfy the distributed constraint




.

qualification of Theorem 1.4 and hence demonstrates the sharpness of that
condition. On the other hand Theorem 1.3(a) can be used to give an exact
' upper bound on the bounded component of the solution of problem (1.2) for
Megiddo's example.
We also note the distributed constraint qualification of
Theorem 1.4 is implied by the ordinary constraint qualification if

k

+ and F 1is concave on Rk

we take p = 1. The converse is true if D =R .

However F 1is not concave in general, and in fact is merely monotone when

it is derived from a differentiable convex program. (See Section 2.) How-

k
+°

[9] that the two constraint qualifications are equivalent. Nevertheless

ever for the general case of a monotone F and D =R it can be shown

the distributed qualification may be easier to verify.
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2. Bounds for Solutions of Convex Programs

We consider now the solvable differentiable convex program

(2.1) min f(x) s.t. y =-g(x) >0, x>0
X

where f: R" - R, g: R" + R™ are convex and differentiable functions,
together with its dual [6]
(2.2) max L(x,u) - xVxL(x,u) s.t. v = VxL(x,u) 20,u2"

X,U

where L(x,u) 1is the standard Lagrangian
L(x,u) = f(x) + ug(x)

and Vx denotes the gradient vector with respect to x. We note that the

Karush-Kuhn-Tucker conditions

v = VxL(x,u) = 7f(x) + uvg(x) >0, x >0, xv = 0

(2.3) -
y = =V,L(x,u) = -g(x) 20, u 20, uy =20

hold if and only if (x,y,u,v) solves the dual programs (2.1)-(2.2) with
equal extrema [6]. If the constraints of (2.1) satisfy the Slater constraint
qualification, that is g{(x) < 0 for some x > 0, then for each solution of
(2.1) the Karush-Kuhn-Tucker conditions (2.3) are satisfiable [6]. If we

make the definitions

(x) C) v, L(xu)
(2.4) 2:s , W:= , F(z):=
u -VuL(x,u)

then the Karush-Kuhn-Tucker conditions take on the equivalent complementarity

probiem formulation [2]




(2.5) w=F(z)>0,2>0, 2w =0

Note that the "twisted" derivative involved in the definition of F(z) has

also been used in (3,13,5,8]. We now establish the monotonicity of this F(z).

2.1 Lemma Let f and g be differentiable and convex on R" and let F(z)
be defined as in (2.4). Then F(z) 1is monotone and continuous for all

2 R" xR,
Proof By the convexity of g and u >0, u >0 we have that

u (g(x) - g(x)) avg(x)(x - x)

v

v

-u(-g(x) +g(x)) > -uvg(x})(-x + x)

Addition of these two inequalities gives
(2.6) - {u-0)(g(x)-g(x)) > (uvg(x)- uvg(x))(x - x)
Hence

(z-z)(F(2) - F(2))

n

(x-X u-1u) (VXL(x,u)- VxL(i,ﬁ)

- (g(x) - g(x))

Iv

(x-%)(vf(x)-vf(x)) (By (2.6))
>0 (By convexity of f)

The continuity of F follows from the fact that a differentiable convex

function on R" s continuously differentiable. 0

We can now apply Theorem 1.1 to the monotone function F(z) of (2.4)

to obtain bounds for optimal solutions and multipliers of (2.1).

2.2 Theorem Let f and g be differentiable and convex on R". Each

primal-dual feasible point of (2.1)-(2.2), that is (x,y,u,v) satisfying




y=-9(x)20, x>0, v="9L(xu)20, u20,

bounds any point (X,y,u,v) which solves the primal-dual programs (2.1)-(2.2)
with equal extrema, or equivalently, which satisfies the Karush-Kuhn-Tucker

conditions (2.3) for (2.1) as follows:

(a) ) ’.‘1 =: ”’.‘I ”] hs (xv+uy)/m'in Viel

ieI] 1 1
(b) Il;JZH] L (xv+uy)/min uiEJz
(c) ”512”1 < (xv +uy)/min yielz
(d) IIVJ] I} < (xv+uy)/min xieJ1
where

11={ihi>N,J2={iwi>m,Iz={ibi>m,d]={ihi>m
Proof Immediate from Theorem 1.1, Lemma 2.1 and definition (2.4). O

Theorem 2.2 is a partial extension of Theorem 3.1 of [7] where bounds
for solutions of linear programs were givén.

A11 the other theorems of Sectiom 1 apply in a straightforward manner
to the convex program (2.1) via the complementarity formulation (2.4)-(2.5).

We state below the counterpart of Theorem 1.4 for the convex program (2.1).

2.3 Theorem (Existence and boundedness of solutions of differ-
entiable convex programs under a distributed constraint qualification)

Let f and g be differentiable and convex on R", Tlet

Yo ogd) R, xR v a v L, ud) er™ Wl 20, ez, e
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be such that for some AJ >0, j=1,2,....,p, E AJ =1:
=1

3ia § add >0, §ie b adyd 5 0, Gom B advd s o
H 9 =

Then there exists (X,y,0,v) which solves the dual programs (2.1)-(2.2) with

equal extrema. Any such solution (X,y,u,v) 1is bounded as follows:

P . . . . .
%30, < (3 A0 +udydy) /min (0, 5))
J=1 1<i<n
159._<_m

Note that the requirement u’ 2 0 in Theorem 2.3 is made because the mono-
tonicity of F of Lemma 2.1 is established only on R"XRT and not on R"xR™,

We give now a simple example illustrating the bounds of Theorem 2.2,
2.4 Example min Xy X, s.t.y=x,-e" 20, Xy % 20
The dual probliem is

X
max Xy + X, - u(xz-e 1) - VX

The primal-dual solution is E] = 0, ’.‘2 =1, y=0,u=1, \7] =2, \72 = 0, j

o 4

(a) To get a bound on H:'(H], take x; = @ >0, x, = e and u = 0. Hence

y==0,v1=1,v2v=1,xv+u,y=oz+e(Jl and

1= %]l g infa+e = g
020 |

a

(b) To get a bound on Ililll, take x; *a 20, x, = e and u = 1. Hence

y=0, v]-l+e°‘. v, = 0, xv + uy = a1 +e%) and
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0= lI7lly < inf alt +e%) = 0

(c) To get a bound on |lull;, take Xy =1>0, x,=a+e,a>0 and

u=1. Hence y = q, vy ® 1 +e, vy = 0, xv +uy =1 +e +a and

l+eta _ 4
a

U= llaly g dnf
a>0
(d) To get a bound on ”Gll]. take x; =a>0, x, = e and u =1,

Hence y =0, v; =1 + e, Vo = 0, xv +uy = a(1+e%), and
o
2 = ||il], g inf ) L o
a>0 :

We conclude by remarking that extensions of the results in this paper
can also be established for the more general case in which the continuous
monotone function F is replaced by a maximal monotone multifunction.

Such extensions allow us to handle problem (2.1) with f and g nondiffer-
entiable, convex and possibly taking the value of +w. Further extensions

can also be proved in which Rk is replaced, for example, by any reflexive

k

Banach space and R+

is replaced by a closed convex cone satisfying certain

interiority/1inearity properties.
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